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Abstract A new approach to the design of compound libraries, named MetaHdetisbplitefro-

cused library), is presented that exploits information encoded in natural molecules and combines natu-
rally occurring and synthetic compounds. An important goal of the MF approach is the identification of
synthetic compounds that mimic properties of natural molecules that are difficult to obtain in sufficient
quantities or to synthesize. Compounds in MetaFocus (MF) arrays are focused on natural molecules
with attractive therapeutic effects. Similarity search and diversity design techniques are employed to
generate compound arrays that start from a selected natural molecule, add similar molecules, either
from natural or synthetic sources, and diversify scaffolds derived from these molecules. Since the
identification of similar molecules from natural and synthetic sources plays a significant role in our
library design efforts, the performance of fingerprint-type search tools was systematically assessed in a
newly assembled test database consisting of 16 biological activity classes. MF arrays are organized as
an easily expandable and searchable data structure and serve as a knowledge base for drug discovery
applications. Here we introduce the design principles and organization of MF arrays and present exam-
ple applications.

Keywords Library design, Molecular scaffolds, Molecular similarity, Naturally occurring molecules,
Similarity searching, Synthetic compounds

search [1-5]. Tus, for many computational chemists, de-
sign of combinatorial libraries and analysis of large com-
o ) ) pound collections have become important topics [5-12]. A
Due to the availability of large-scale combinatorial synthe-yariety of design concepts are currently applied [13-16], and
sis and high-throughput screening technologies, combinag ge and diverse compound libraries play a significant role
torial libraries play a significant role in pharmaceutical re-j, screening [17]. However, at the same time, efforts have

increasingly expanded towards the design of smaller and
- more specialized libraries that are focused on specific thera-
Correspondence tal. Bajorath, NCE, 18804 North Creek peutic targets and/or include bioavailability criteria as de-
Pkwy. S., Bothell, Washington 98011, USA sign parameters [18-25].
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The assessment of molecular similarity, definition of dAs sources for synthetic compounds, ACD [38] and Maybridge
versity space(s) for combinatorial exploration, and genefd9] were used. A total of ~199,000 synthetic compounds
tion of chemical diversity have been, and continue to be, caere screened.
nerstones of library design straiegy [13-16]. This is also
true for target-focused or analog libraries that usually rely on
chemical diversification of preferred core structures or sEemputations and data structures
lected lead compounds [24-26]. A variety of concepts have
been developed to facilitate diversity analysis and design BOE [40] served as a computational platform to visualize
16]. Many of these approaches depend on the definitionsefuctures, calculate descriptors and properties, launch simi-
chemical diversity space, typically by selection of variodarity search calculations (see below), create intermediate
molecular descriptors [13-16,27-29]. In this context, it idatabases, and sample diverse compounds (see below). Com-
important to consider that the choice of diversity criteria rpeunds are indexed by incorporating a code into their data
mains somewhat subjective and that it is still difficult to déiles, as illustrated in the Results section. MF arrays were
cide which concepts or strategies are most efficient in gerimplemented in MOE, ISIS [41] and also kept as UNIX files.
ating chemically meaningful diversity.

We have attempted to explore a conceptually different way
to design compound libraries for drug discovery applicatior@imilarity searching
In contrast to many contemporary approaches, we initially
focus on the selection of naturally occurring molecules witthe ability to search for compounds with biological activity
known therapeutic effects, rather than on chemical reacti@isilar to query molecules, regardless of their chemical ori-
or preferred synthetic building blocks [30-34]. Although it igin, is an important aspect of the MF approach. For similar-
widely accepted that natural molecules are valuable ditgsearching, a binary mini-fingerprint (MFP1, also called
sources, many of these molecules are chemically too ca&Key-3DS), consisting of only 54 bit positions, was used
plex to subject them to synthetic programs [35,36]. This m@2]. MFP1 was originally designed to detect compounds with
explain why little, if any, effort has so far been spent to gesimilar activity in a test database [42,43]. It consists of nu-
erate libraries consisting of both natural and synthetic comerically encoded descriptors that account for molecular flex-
pounds. Given these limitations, why is it still attractive tibility, aromatic character, and hydrogen bonding acceptors
"focus” compound libraries on selected natural moleculeg®total of 22 bit positions) and, in addition, 32 bit positions
A major reason is that many available natural products haezounting for the presence or absence of defined structural
associated therapeutic effects [37], for example, anti-badgtey-type [28,44] molecular fragments. Details of the MFP1
rial or anti-fungal activity. Thus, careful exploration of struaiesign were previously reported [42,43]. The fingerprint was
tures and properties of such molecules may help to identidherated using SVL code [45] and implemented in MOE
novel synthetically accessible molecules with related effe¢és$ similarity searching.
and specificity. In this regard, natural molecules provide a
knowledge base for focusing compound libraries on certain
therapeutic target areas. Analysis of fingerprint performance

We have selected a number of natural molecules of mod-
erate chemical complexity and interesting biological effedfge have carried out systematic calculations to test the pre-
and subjected them to computational design efforts. In thgf®ive value of MFP1 prior to its application in array design.
studies, we compute analogs of natural molecules andfdo so, we have assembled a new benchmark database con-
tempt to identify synthetically accessible mimics for divekisting of 264 compounds belonging to 16 different biologi-
sity design. These compounds are indexed and organizeddpactivity classes. The detailed composition of the database
chemical arrays that consist of both natural and synthg§geported in the Results section. Seven of 16 activity classes
molecules. Here we report on our initial efforts to desigipnsisted of synthetic compounds and were selected from
MetaFocus arfgs. Weintroduce the components of the apthe literature as described [46]. The other nine activity classes
proach, discuss the design principles and computational teghsisted of natural molecules and were assembled by search-
nigues, and present applications. ing for compounds with similar specific activity documented
in the Chapman & Hall database [37]. The resulting database
was imported into MOE for search calculations. The perform-
Materials and methods ance of MFP1 was assessed by systematic "one against all”
calculations where each compound was separately searched
against the remainder of the database and the percentage of
correctly identified compounds (i.e., belonging to the same
activity class) and false positives (i.e., belonging to different
As a source of naturally occurring molecules, the Chapmaaqivi'gy classes) was calculated. As a similarity criterion, fin-
& Hall compound collection was used [37]. Appimately J€'Printoverlap between query molecules and database com-
116,000 natural molecules were searched in our calculatidfinds was calculated using the Tanimoto coefficient (Tc)

Source databases



552 J. Mol. Model.2000,6

[47]. Two series of calculations were carried out. First, comiversity sampling
pounds were considered similar at a Tc cut-off value of at
least 0.85, a value often used to indicate chemical andfotlowing selection of scaffolds, diverse compounds were
functional similarity of compounds [6]. Second, Tc valuesampled by exploring many scaffold/R-group combinations.
were systematically varied between zero and one in inciigris design is more similar to product-based [24,31] than
ments of 0.01 to determine the Tc cut-off value that yieldeshction-based design [7,10,31], as it relies on molecular scaf-
overall best similarity search performance. Thus, for eachfolds derived from whole molecules, as opposed to reagent
the 264 compounds, 101 similarity search calculations wéiggs. Sampling of scaffold/R-group combinations was per-
carried out. On the basis of these calculations, overall permed using the QuaSAR-CombiDesign function of MOE
formance values were determined. Furthermore, systemp4@] as follows. For addition of R-groups to scaffolds, be-
calculations were carried out to assess class-specific infliween one and four substitution points per scaffold were de-
ences on overall prediction performance. In these calcuiaed. Initially, combinations of scaffolds and R-groups were
tions, each of the 16 activity classes was omitted once fremmdomly sampled and selected molecular descriptors calcu-
the database and the exhaustive "one against all” search leééd for each compound. As descriptors, we used a previ-
culations were repeated, yielding 16 performance values éusly reported set of 57 structural-key type fragments [46],
different combinations of 15 activitylasses.All programs the number of aromatic bonds in a molecule, the fraction of
required for these calculations were written in SVL [45] andtatable bonds, and the number of hydrogen bond accep-
implemented in MOE. tors. These descriptors correspond to those encoded in our
mini-fingerprint [42] (see above). For 100 randomly selected
compounds, a principal component analysis [50] of molecu-
Scaffolds and R-groups lar descriptor space was performed and the top three princi-
pal components, linear combinations of original descriptors,
Our approach to generate diverse compounds, as describerk selected for subsequent calculations. Monte Carlo (MC)
below, relies in part on a hierarchical description of madimulated annealing calculations were then carried out to
ecules [32], which means that molecules are divided into scgdmple diverse compounds in descriptor space defined by
folds (or core structures) and R-groups. Isolation of scaffolttisee principal components. These calculations started at a
from natural molecules and their mimics provided the basiermalized temperature (T) value of 1 and proceeded through
for computational design of derivaés. There are differentat least 7,500 MC steps, while T was scaled using a factor of
ways to define molecular scaffolds. They can be isolated fr@®5 from one iteration to the next, until T was smaller than
compounds automatically by use of algorithms that bre4@®. During these calculations, compounds were randomly
defined bonds in molecules [32,48], are knowledge-basedthanged between the initially enumerated source database
[23,24], or encode reaction information [34]. In knowledgend the diverse sample. An entropy-based metric was applied
based scaffold design, core structures of known inhibitorsasr a diversity criterion: A compound was accepted in the di-
lead compounds are selected and used as molecular builgarge sample if its addition led to an increase in entropy of
blocks for combinatorial exploration [23]. This requires pridhe descriptor distribution in principal component space. Di-
knowledge about core structures that are active against giversity sampling was terminated when 2,000 compounds were
targets, for example, compounds that are ATP-analogs amdduced from an initially specified ensemble of scaffolds.
known to bind to the cofactor binding site in tyrosine kinases
[24]. Chemical reaction information can also be used to iso-
late molecular building blocks from compounds, which . .
well illustrated by the retro-synthetic RECAP approach [3 gsults and discussion
Although we can generate molecular scaffolds automatically
[48], they were, for the examples presented here, deﬁned.l.l]),}/e
selecting points of chemical diversity in a molecule as sites

for R-group attachment. In addition, we implicitly incorpo- . .
rated reaction information by specifying intermediate pro he MF approach attempts to expand and diversify struc

ucts for a given reaction as separate scaffolds. This was dohes and prope rties of natural_molgcules with th.e'rapegtically
: vant activities. Practically, it relies on the ability to iden-

to ensure synthetic feasibility of designed compounds. }e X :
R-group database consisted of ~1,500 different groups. NO- synthetic ar!d/or natural molecules that have properties
. i ilar to a particular metabolite and to generate diverse de-

ring R-groups were isolated from Maybridge compounds [33 . : : :
using a previously reported algorithm [48] and complementr tives. Figure 1 illustrates the different components of

by ring moieties identified by retro-synthetic compound analy;. arrays using anisomycin as an example. Anisomycin is
sis [34]. This R-group database consisted of moieties wi emically a relatively simple metabolite frdtreptomyces

carbon, oxygen, or nitrogen atoms as substitution poing '.S.gict’loursvgggv:ino[\év{]]’ Yl_e;ul'sttlﬁ reé(plggendt’s FgOtg'SgiE?':tQZﬂ_s
Subsets of the database were created with groups only hayProry y : ' pe P

ing either carbon, nitrogen, oxygen atoms as attachmélt point to focqs (;]hem|hcal ]lbrlarles on sucheeﬂ;._ Th?f.
points. underlying idea is that chemical expansion and diversifica-

MetaFocus concept
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tion of the structure offor example anisomycin would in- Scdfold design and application

crease the probability of generating compounds with modu-

lated and perhaps more sgacacivities. This general prin- For the product-dented compound design appch [30,31]
ciple often applies to the design of focused compound-ibrésee Methods), the geméon of molecular sd#olds plays
ies [24,25]. an importantole. Scé#folds are best damed "hierachically”

Metabolite

O
Y
@)
HN

OH

ANISOMYCIN Synthetic mimics

~
S —
~
Similar metabolites \O/?\O/\(\ N
o OH c

Directly derived scaffolds JXe)

P e |

OY HN © Scaffolds
o) OH

0-R \oi;j\or E/\@
l l cl

Compounds (Diversity sampling)

~ ~I

@) 3 =
Y N O/\(\N
0 % HO
AL R ;

O COCH
Figure 1 Components of Metocus arrgys. Anisomycin is ples ae stown. Directly deriied scéfolds ae obtainel, for
shown as arexample of a natwal molecué. Several major exampk, by specifying points of diversity that can be tar-
components form an array: Ectly derved scafolds, simi- geted in synthetichemistry &orts to poduce dewatives.
lar natural molecules, scédlds derized fom similar natual ~ Similar metabolites and synthetic mimics abtainedy simi-
molecules (omitted for clarity), synthetic mimics, &ds larity seaching. Scaffolds @ submitted to diversity sam-

derived fom synthetic mimics, andwerse deivatives and pling of scéfolds/ R-goup combinations
compounds gemated fom sc#olds. Repesendtive exam-



554 J. Mol. Model.2000,6

Table 1 Biological activity

classes of compounds in the Biological activity Number of compounds
test database S_BEN Benzodiaepine receptor gands 22
S CAE Carbonic anhydrase Il inhibitors 22
S H3E H3 antagonists 21
S TKE Tyrosine kinase inhibitors 21
S 5HT Serotonin receptor ligands 21
S _HIV HIV protease inhibitors 18
S QOX Cyclooxygenase-2 inhibitors 17
N_5LP 5-Lipoxygenase inhibitors 17
: N_ACE Angiotensin caverting enzyme inhibitors 9
The database consists of C(-)mN_CAT Acyl-CoA: cholesterol acyltrafierase inhibitors 20
pounds belonging to 16 bio- R
: o N_BLC B-lactamase inhibitors 14
logical activity dasses. e ; D
, : N_PPD Phosphodiesterase inhibitors 14
first column sbwsabbrevia- | — ; A
; - N_PA2 Phospholipase 2 inhibitors 12
tions for each activityclass. M S
we w1 . N_PKC Protein kinase C inhibitors 15
S_"indicates syntheticcom- _— ) Y
pound classes and "N_" N_RVT Reverse'tra.lns_cr'lptase inhibitors 14
— N_TMB Thrombin inhibitors 7

natural molecules

Table 2 Performance of minfingerprint MFP1 in similarity seahes including atural molecules

cut-off correct (%)  incorrect (%) cut-off correct (%)  incorrect (%)

MFP1 0.85 19.7 0.1 0.75 34.1 1.0

PH2D 0.85 11.6 0 0.64 26.7 0.6

S_BEN 0.85 20.8 0.11 0.75 35.8 1.13
S_CAE 0.85 19.9 0.09 0.75 32.1 1.07
S_H3E 0.85 20.6 0.10 0.75 35.5 1.19
S_TKE 0.85 19.7 0.10 0.75 33.5 1.09
S_SHT 0.85 20.5 0.10 0.75 35.1 1.17
S_HIV 0.85 20.3 0.10 0.74 36.4 1.24
S_QOX 0.85 18.9 0.09 0.75 32.1 1.07
N_5LP 0.85 20.1 0.10 0.75 35.1 0.87
N_ACE 0.85 19.8 0.07 0.74 32.8 1.03
N_BLC 0.85 17.7 0.10 0.74 32.8 1.18
N_CAT 0.85 18.9 0.07 0.74 34.2 1.02
N_PPD 0.85 19.9 0.10 0.75 34.6 1.08
N_PA2 0.85 19.4 0.06 0.74 35.3 0.94
N_PKC 0.85 19.0 0.10 0.74 34.6 1.10
N_RVT 0.85 19.8 0.03 0.75 34.8 0.79
N_TMB 0.85 19.7 0.09 0.74 34.4 1.16

Performance isreported for two similarity cut-# values of in exhausive "one against all” seeches in the test dabase,
the Tanimoto codfcient (Tc). The second Tovalue repre- and compee its performance to a pharmacopbatom-type
sents the similarity cutfbvalue at which best performance fingerprint, PH2D [52], implemented in MOE, that consists
was achéved, as determined in our calculatio®sTc value of 1,024 bits. Rows tee to 18report results of refeence

of 0.85 is often used as a measofchemical similarity of calculations. In each calculation, one activity class was omit-
two molecules [6]. "Corect” reports the pecentage of oo ted fom the databases aeghaustive similarity seahes vere
recly identfied compounds and "incoect” the pecentage carried outfor compounds bel@ing to theremaining 15

of false positie matties The first o rowsreport the ower-  classes. Biological aotity classes ee abbreviated accod-

all performance of MFP1, consisting of only 54 bit positiongg to Table 1
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Figure 2 Design of directly dered scé#folds using reac-
tion information. Initiall y, two points of diersity wee speci-
fied in anisanycin, a secondary amine and the hypd/lgroup
attached to the aliphatic ringThen sc#olds wee ddined
that ae intermediates of diffent chemicalreactions (four
scdfolds for substitutions of the amine and one, anrefste

the hydoxyl goup). Combination of these dfmds yields a
total of nine scdblds for a two-step combinatoriakaction
sequene. In this examm@, R1 substitutionsvere computed
using R-goups with only carbon atoms as substitution points,
while R2 substitutionseere geneated using Ryroups with
carbon nitrogen, or oxygen atoms as substitution points

as core structures obtained from molecules after subtractions as sepate sc#folds incorpostes reaction information.
of R-groups [32]. Figure 1 sdws two dfferent types of scaf- For anisomycin, this resulted in four $cdds for the ifrst

folds used t@eneste MF arays. In ourapproach, sd&olds

point of dversity (secondary amine) and oneféad for the

are either directly déered from natural molecules by specisecond (hyobxyl group). Roducts from two-step combina-

fying points of dversity (i.e., sites that can bergetedby

diverse chemical reactions) or deed from synthetic mim-

torial reactions wee designedby diversity sampling of scaf-
fold/R-group combinationat thefirst point and subsequently

ics. To ensure syntheti€easibility of MF compounds, we submitting the products generated foedsity sampling at

atempt to design séfmlds thet implicitly incorporate reac-
tion information This is illusteted in Figue 2 which slows
scdfolds directly deived from anismycin. Two points of
diversity were tageted a secondary amine andhgdroxyl
group. The use of intermedies of spedic chemicalreac-

the second site. Synthetic feasibility of compounds is further
consideredoy pre-selection of R-groupsFor example, in

the case of anisomycin, R1 substitutions, asvshin Figure

2, were computed using R-groups with only carbon atoms as
atachment points tavoid the design of unstable compounds.
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Figure 3 Synthetic mimics _0
of anisornycin. Two mimics of
anisomycin g shown that O
were identfied by similarity Y
seaching inACD using mini- O
fingerprint MFP1 (see Meth- HN
ods). The Tanimoto coéi-
cient (Tc) for MFP1 werlap OH
between anisomycin and the
two synthetic compounds was
0.8
~3 S —
S N / 5
O/\/\ N HO Y\ N N\ 7/ A\
0 oH . o—
| e} cl O
Mimic 1 Mimic 2
Similarity seach tools designed to identify micture-adtity relationships correctly

must be capable of distinguishing critical features in com-
The identfication of synthetically accedde mimics of pounds lving different biolaical actvities but should not
metabolites is an important component of the MF approabk. too sensite to minor structuravariations that are tote
We have previously reported thegeneration of small bimg  ated within the same aetty class. MFPs genated sofar
fingerprints (temed mini-fingerpints or MFPs) tat were were not spedically trained on natural molecules.
specfically designed taemgnize molecules with similar  In the context of MF litery design, we hae tested MFP1
biological acivity, rather than chemical similarity bpn[42]. for its ability to recognize similarities in both synthetic and
In test calculations using a database consistingvefiscom- natural moleculesTo do so, we &we assembled a test data-
pound classes, a total of 455 compounds, MFP1 corrediBse consisting of synthetic and natural compounds belong-
recognized approximately 50% of compounds belongingit@ to 16 biobgical acivity classes (betweeregen and 22
the same abtity class and only 2%alse posites [42,43]. compounds per classjhe exact composition of the test da-
An important aspect of MFP design has been to balancetiigase iseported in Table 1. In this more challenging test
level of stucturalresolution at which compounds asealu- case, systematic similty searchesavealed an appximately
ated and the ability to detect features responsible for a sp&% probability to identify molecules with similar biologi-
cific biological actvity [43]. In otherwords, seech tools cal acivity correctly and only 1%alse posites. Tis over-

U

Figure 4 Comparison of anismycin and its mimicsThe (using the same coloriseme). The superpo-sitionreveals
figure shows optimal tiee-dimensional alignments (calcuthe spatial corespondence of points of chemical diversity
lated with the flexible alignment function of MOE [56]) ofor substitution points, labeled R) in these molecules
anisanycin and the two synthetic mimics showrrigure 3
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all performancedvel was acheved at a Tc value of 0.75. If old value of 0.8, even "similar” compounds were idefigd
the Tc cut-df value was grater (and thus mme stringent) and Figure 3 stws twoexamples. Some structural similar
than 0.75, éwer similarities were iderfted. The results are ties areevident when comparing these moleculeswiver,
reported n Table 2. Consistent with pvious findings [42], it would have been diicult, if not impossibé, to identify
MFP1 performed better than a more complicated referenlese similarities by substructure matching. Figurealvsh
fingerprint [52]. Additional calcuétions slown in Table 2 the results offlexible three-dimensional alignments of
demonstate that omission of irididual biological advity anisomycin and its mimics, which further illustrates simi-
classes did not notably influencgerall performance, indi- larities between these moleculdss can be seen, points of
cating the absence of sificantclass-spedic effects Thus, chemical dversity in anisonycin (as specified in Figure 2)
on the basis of these calculations, similarity searching ussgatially carespond to those in the mimicghe comparison
MFP1 povided areasonable chance to identify compoundsipports the idea that meaningful similarities can be detected
with similar properties from ffierent sources. using reétively simple 2D metrics. Indalition, seach calcu-
lations identiied 21 natwal molecules similar to anistycin.
Since the molecular basis of the protein synthesis inhibitor
Anisomycin mimics actvity of anisomycin is littleexplored, functional analogs
may act in avariety of ways. This suppaots the stategy of
As the next s, following scdfold design, synthetic com- generating compound libraries focused on anisomycin and
pounds were searchéar potential mimics. UsingTc thresh-  its mimics to seah for novel inhibitors of potein synthesis.

Anisomycin Directly derived scafolds Compounds
_0
OY
@]
HN
OH
Similar natural molecules Scafolds Compounds

Scafolds Compounds

Synthetic mimics

Figure 5 Structure of a Met&ocus arra.. The anisomycin "20 from 2” means that a total of 20 molecular séflds
array represents a virtual library of appximately 8,000 en- were deived fom two similar metolites, and "23 fom 2"
tries resulting fom drectly derived sc#olds, fom sc#folds means tht 23 scaffolds we derved fom two synthetic mim-
derived fom similar natwal molecules, or synthetic mimicsics
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Figure6 Compound indicesThefigure illustrates how mol- ral molecules similar to NFor example, "N1SM1SC5C4”
ecules in MF arays ae indexed to captee their relation-
ships to othes. "N” indicates a ratural molecule, "DD”
means diectly deived sc#old, "SC” scaffold, and "SM”
synthetic mimic. Not showntieeis "SN”, the indeXor natu-

Anisomycin array

The MF aray was obtained by combining $@ds, mimics,
and dverse compounds gemrgrd using anisoycin as tem-
plate. The aganization of the aray is stown in Figue 5 The
key to the mganization and expansion of MFays is the use
of an indexing scheme. Compound indices aosvalin Fig-
ure 6. This ensures that all entries and theietieh to other
compoundsi& clearly ddined and mkes it possible to seeh
the aray for analogs of atural productsAlternaively, arrays
can be saahed using synthetic compounds as inputirid
outwhether these compounds are relatednyodd the ratu-

ral molecules in the aay.

Focusing on potein kinases

(lower right) ddines this entry as the fourth compound ob-
tained by dversity samplingrbm scéfold numberfive de-
rived fom synthetic mimic number one of matumolecule
one (anisomycin)

its actvity has been identified as target-sgexiThe mo-
lecular mehanism of action is yet to be determined but data
available so far suggest that binding of L-783,281 to the in-
sulin receptor kinase induces an {(eating) conformational
change in theagion of tre ATP (cofactor) binding site adja-
cent to the catalytic site [53[Thus, L-783,281 presents an
attractive starting point tgeneate molecules that potentially
modulate the spditity and adlvity of protein kinasessimilar

to a peviously reported approach [23].

Similarity seaching for L-783,281

Using a Tc cut-df value of 0.8for MFP1overlap, six syn-
thetic mimics were identified and, using a slightly highe
value of 0.85, 2%elated @tural molecules, the majority be-
ing other quinone dafatives. Representave examples are

Another aray was designed based on an "insulin mimeticghown in Figure 7. Although the compoundsate not yet

a fungal madbolite capable of aitating the insulin receptor been testd literatre seachesrevealed tlat one of these
tyrosine kinase (and thus inducing insulin-dependent signaltgmpounds, bisindolylmaleimide Il (BM), has known in-
pathways) [53] This molecug, a ratural quinone dévative,
named L-783,281 [53], is stvn in Figue 7. It ischemically of its structure with other kinase inhibitors [23,24] suggested
more compéx than anisomycin. In contrast to anisomycirthe possibility tlat it may bind to the ctactor binding site.

hibitory actvity against protein kinase C [54]. Comparison
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L-783,281

ACD

180424 184243 Bisindolylmaleimide 1lI
0.80 (Tc) 0.80 0.80

Chapman & Hall

~ “zT

Semicochliodinol A 14an-Hydroxypaxilline 15'-Hyroxy-14',15'-
0.90 (Tc) 0.85 dihydroisoborreverine
0.85

Figure 7 Similarity seach for fungal metabolite L-783,281Repesentéive results of simileity seachesfor "insulin
mimetic” L-783,281 e shavn. Tc provides thevalue of tle Tanimoto coéicient for L-783,281 and selected mimics

This region is lagely conseved in protein kinases, yetf§ia  Compound and aay design

ciently different to permit the genation of ligand with dis-

tinct spediicity [23,55]. Thus, in this case, these compound#/e initially focused compound design on BM. Nine scaf-
are thought to bind to similar sites in related enzymes, Yelds wae deived and fom these, 2,000i¢erse compounds
cause oppositefiects. It follows thatexploitation of these were sampled (Figer8). The current structure of the MF
molecules is likely to yield additional compounds with-fu array is shown in Figure 9. In confast to the anisomycin ex-
ther modulated féects, consistent with the idea behind Mample (slown in Figure 5), the L-783,281 ay is only pa-
array design. tially filled, since semi-synthetic deatives of L-783,281 or



560 J. Mol. Model.2000,6

1 synthetic mimic: 9 scafolds deived 2000 diverse compounds
Bisindolylmaleimide Il from mimic computed rom scafolds
OH

Figure 8 Compound designBisindolylmaleimide Illwas molecule and 2,000 irse compoundaere computedrém
identified by similarity se@hing as a synthetic mimic of L-these scfiolds. Repesendtive structues ae shown
783,281 (se€igure 7). Nine scifolds wee derived fom this

derivatives designed from similar natural molecules ges- ating chemical dersity. The MetaFocus comept captures
enty not includel. However, the aray can bereadily ex- information encoded in natural molecules and translates this
panded to includefor example compounds designed frominformation into synthetically accessible molecules. Each
other mimics. array is focused on a spéic natural molecule and presents a
defined, yet flexible an@éxpandable dta stucture. However,

there are inherent limitations to the approach and a number
of possibilitiesfor impro/ement Arrays can certaily not be
genegted for many natural molecules that are too caxpl

) for our current appro&cThus, the selection of sditle natural
We feve attempted to@elop a design sitegy that relates proqucts will continue to depentb some extent, on subjec-

structures and properties of naturally occurring molecules gRg criteria. Furthermer since a critical component of this
synthetic compounds andgides a basis for thgeneetion  concept is the iderftcation of synthetically accedse mim-

of natual/synthetichybrid libraries. Amajor reason for do- ics of retural moleculeswe aim to further impve the pe

ing so is tlat many natural molecules and theiriaies €ven  formance of our search tools to identify molecules with similar
if not well characteized) povide arelatively unexplored propaties, regardless of their chemical sourceowever, ir-
knowledge baséor focusing compound libraries and generespedte of curent compuational details design of MF

Conclusions
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L-783,281 Directly derived scafolds Compounds

Similar natural molecules Scafolds Compounds

Scafolds

Synthetic mimics Compounds

Figure9 Array for L-783,281In contast to anisomycin (see”9 from 1” scafolds and "2,000 compounds'epresent the
Figure 5), this aray is ory partially filled. The army does designexample for bisindolylmaleimide Il (shown Hig-
not contain diecly deived sc#folds. Twenty-onerelated ure 8)

natural moleculeswere identfied and six synthetic mimics.

arrays is bginning to set diectionsfor chemical applica- 4. HoughtenR. A.; Pinilla, C.; Appel, J. R.; Blondelle, S.
tions as illustated by ourexamples. E.; Dooky, C. T.; Eichle, J.; Nefzj A.; Ostesh, JM. J.
Med. Chem1999, 42, 3743.
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