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Introduction

Due to the availability of large-scale combinatorial synthe-
sis and high-throughput screening technologies, combina-
torial libraries play a significant role in pharmaceutical re-

search [1-5]. Thus, for many computational chemists, de-
sign of combinatorial libraries and analysis of large com-
pound collections have become important topics [5-12]. A
variety of design concepts are currently applied [13-16], and
large and diverse compound libraries  play a significant role
in screening [17]. However, at the same time, efforts have
increasingly expanded towards the design of smaller and
more specialized libraries that are focused on specific thera-
peutic targets and/or include bioavailability criteria as de-
sign parameters [18-25].
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The assessment of molecular similarity, definition of di-
versity space(s) for combinatorial exploration, and genera-
tion of chemical diversity have been, and continue to be, cor-
nerstones of library design strategies [13-16]. This is also
true for target-focused or analog libraries that usually rely on
chemical diversification of preferred core structures or se-
lected lead compounds [24-26]. A variety of concepts have
been developed to facilitate diversity analysis and design [5-
16]. Many of these approaches depend on the definition of
chemical diversity space, typically by selection of various
molecular descriptors [13-16,27-29]. In this context, it is
important to consider that the choice of diversity criteria re-
mains somewhat subjective and that it is still difficult to de-
cide which concepts or strategies are most efficient in gener-
ating chemically meaningful diversity.

We have attempted to explore a conceptually different way
to design compound libraries for drug discovery applications.
In contrast to many contemporary approaches, we initially
focus on the selection of naturally occurring molecules with
known therapeutic effects, rather than on chemical reactions
or preferred synthetic building blocks [30-34]. Although it is
widely accepted that natural molecules are valuable drug
sources, many of these molecules are chemically too com-
plex to subject them to synthetic programs [35,36]. This may
explain why little, if any, effort has so far been spent to gen-
erate libraries consisting of both natural and synthetic com-
pounds. Given these limitations, why is it still attractive to
”focus” compound libraries on selected natural molecules?
A major reason is that many available natural products have
associated therapeutic effects [37], for example, anti-bacte-
rial or anti-fungal activity. Thus, careful exploration of struc-
tures and properties of such molecules may help to identify
novel synthetically accessible molecules with related effects
and specificity. In this regard, natural molecules provide a
knowledge base for focusing compound libraries on certain
therapeutic target areas.

We have selected a number of natural molecules of mod-
erate chemical complexity and interesting biological effects
and subjected them to computational design efforts. In these
studies, we compute analogs of natural molecules and at-
tempt to identify synthetically accessible mimics for diver-
sity design. These compounds are indexed and organized in
chemical arrays that consist of both natural and synthetic
molecules. Here we report on our initial efforts to design
MetaFocus arrays. We introduce the components of the ap-
proach, discuss the design principles and computational tech-
niques, and present applications.

Materials and methods

Source databases

As a source of naturally occurring molecules, the Chapman
& Hall compound collection was used [37]. Approximately
116,000 natural molecules were searched in our calculations.

As sources for synthetic compounds, ACD [38] and Maybridge
[39] were used.  A total of ~199,000 synthetic compounds
were screened.

Computations and data structures

MOE [40] served as a computational platform to visualize
structures, calculate descriptors and properties, launch simi-
larity search calculations (see below), create intermediate
databases, and sample diverse compounds (see below). Com-
pounds are indexed by incorporating a code into their data
files, as illustrated in the Results section. MF arrays were
implemented in MOE, ISIS [41] and also kept as UNIX files.

Similarity searching

The ability to search for compounds with biological activity
similar to query molecules, regardless of their chemical ori-
gin, is an important aspect of the MF approach. For similar-
ity searching, a binary mini-fingerprint (MFP1, also called
SSKey-3DS), consisting of only 54 bit positions, was used
[42]. MFP1 was originally designed to detect compounds with
similar activity in a test database [42,43]. It consists of nu-
merically encoded descriptors that account for molecular flex-
ibility, aromatic character, and hydrogen bonding acceptors
(a total of 22 bit positions) and, in addition, 32 bit positions
accounting for the presence or absence of defined structural
key-type [28,44] molecular fragments. Details of the MFP1
design were previously reported [42,43]. The fingerprint was
generated using SVL code [45] and implemented in MOE
for similarity searching.

Analysis of fingerprint performance

We have carried out systematic calculations to test the pre-
dictive value of MFP1 prior to its application in array design.
To do so, we have assembled a new benchmark database con-
sisting of 264 compounds belonging to 16 different biologi-
cal activity classes. The detailed composition of the database
is reported in the Results section. Seven of 16 activity classes
consisted of synthetic compounds and were selected from
the literature as described [46]. The other nine activity classes
consisted of natural molecules and were assembled by search-
ing for compounds with similar specific activity documented
in the Chapman & Hall database [37]. The resulting database
was imported into MOE for search calculations. The perform-
ance of MFP1 was assessed by systematic ”one against all”
calculations where each compound was separately searched
against the remainder of the database and the percentage of
correctly identified compounds (i.e., belonging to the same
activity class) and false positives (i.e., belonging to different
activity classes) was calculated. As a similarity criterion, fin-
gerprint overlap between query molecules and database com-
pounds was calculated using the Tanimoto coefficient (Tc)
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[47]. Two series of calculations were carried out. First, com-
pounds were considered similar at a Tc cut-off value of at
least 0.85, a value often used to indicate chemical and/or
functional similarity of compounds [6].  Second, Tc values
were systematically varied between zero and one in incre-
ments of 0.01 to determine the Tc cut-off value that yielded
overall best similarity search performance. Thus, for each of
the 264 compounds, 101 similarity search calculations were
carried out.  On the basis of these calculations, overall per-
formance values were determined. Furthermore, systematic
calculations were carried out to assess class-specific influ-
ences on overall prediction performance. In these calcula-
tions, each of the 16 activity classes was omitted once from
the database and the exhaustive ”one against all” search cal-
culations were repeated, yielding 16 performance values for
different combinations of 15 activity classes. All programs
required for these calculations were written in SVL [45] and
implemented in MOE.

Scaffolds and R-groups

Our approach to generate diverse compounds, as described
below, relies in part on a hierarchical description of mol-
ecules [32], which means that molecules are divided into scaf-
folds (or core structures) and R-groups. Isolation of scaffolds
from natural molecules and their mimics provided the basis
for computational design of derivatives. There are different
ways to define molecular scaffolds. They can be isolated from
compounds automatically by use of algorithms that break
defined bonds in molecules [32,48], are knowledge-based
[23,24], or encode reaction information [34]. In knowledge-
based scaffold design, core structures of known inhibitors or
lead compounds are selected and used as molecular building
blocks for combinatorial exploration [23]. This requires prior
knowledge about core structures that are active against given
targets, for example, compounds that are ATP-analogs and
known to bind to the cofactor binding site in tyrosine kinases
[24]. Chemical reaction information can also be used to iso-
late molecular building blocks from compounds, which is
well illustrated by the retro-synthetic RECAP approach [34].
Although we can generate molecular scaffolds automatically
[48], they were, for the examples presented here, defined by
selecting points of chemical diversity in a molecule as sites
for R-group attachment. In addition, we implicitly incorpo-
rated reaction information by specifying intermediate prod-
ucts for a given reaction as separate scaffolds. This was done
to ensure synthetic feasibility of designed compounds. Our
R-group database consisted of ~1,500 different groups. Non-
ring R-groups were isolated from Maybridge compounds [39]
using a previously reported algorithm [48] and complemented
by ring moieties identified by retro-synthetic compound analy-
sis [34]. This R-group database consisted of moieties with
carbon, oxygen, or nitrogen atoms as substitution points.
Subsets of  the database were created with groups only hav-
ing either carbon, nitrogen, oxygen atoms as attachment
points.

Diversity sampling

Following selection of scaffolds, diverse compounds were
sampled by exploring many scaffold/R-group combinations.
This design is more similar to product-based [24,31] than
reaction-based design [7,10,31], as it relies on molecular scaf-
folds derived from whole molecules, as opposed to reagent
lists. Sampling of scaffold/R-group combinations was per-
formed using the QuaSAR-CombiDesign function of MOE
[49] as follows. For addition of R-groups to scaffolds, be-
tween one and four substitution points per scaffold were de-
fined. Initially, combinations of scaffolds and R-groups were
randomly sampled and selected molecular descriptors calcu-
lated for each compound. As descriptors, we used a previ-
ously reported set of 57 structural-key type fragments [46],
the number of aromatic bonds in a molecule, the fraction of
rotatable bonds, and the number of hydrogen bond accep-
tors. These descriptors correspond to those encoded in our
mini-fingerprint [42] (see above). For 100 randomly selected
compounds, a principal component analysis [50] of molecu-
lar descriptor space was performed and the top three princi-
pal components, linear combinations of original descriptors,
were selected for subsequent calculations. Monte Carlo (MC)
simulated annealing calculations were then carried out to
sample diverse compounds in descriptor space defined by
three principal components. These calculations started at a
normalized temperature (T) value of 1 and proceeded through
at least 7,500 MC steps, while T was scaled using a factor of
0.95 from one iteration to the next, until T was smaller than
10-6. During these calculations, compounds were randomly
exchanged between the initially enumerated source database
and the diverse sample. An entropy-based metric was applied
as a diversity criterion: A compound was accepted in the di-
verse sample if its addition led to an increase in entropy of
the descriptor distribution in principal component space. Di-
versity sampling was terminated when 2,000 compounds were
produced from an initially specified ensemble of scaffolds.

Results and discussion

The MetaFocus concept

The MF approach attempts to expand and diversify struc-
tures and properties of natural molecules with therapeutically
relevant activities. Practically, it relies on the ability to iden-
tify synthetic and/or natural molecules that have properties
similar to a particular metabolite and to generate diverse de-
rivatives.  Figure 1 illustrates the different components of
MF arrays using anisomycin as an example. Anisomycin is
chemically a relatively simple metabolite from Streptomyces
griseolus with known, yet little explored, protein synthesis
inhibitory activity [51]. Thus, it represents a possible start-
ing point to focus chemical libraries on such effects. The
underlying idea is that chemical expansion and diversifica-
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Figure 1 Components of MetaFocus arrays. Anisomycin is
shown as an example of a natural molecule. Several major
components form an array: Directly derived scaffolds, simi-
lar natural molecules, scaffolds derived from similar natural
molecules (omitted for clarity), synthetic mimics, scaffolds
derived from synthetic mimics, and diverse derivatives and
compounds generated from scaffolds. Representative exam-

ples are shown. Directly derived scaffolds are obtained, for
example, by specifying points of diversity that can be tar-
geted in synthetic chemistry efforts to produce derivatives.
Similar metabolites and synthetic mimics are obtained by simi-
larity searching. Scaffolds are submitted to diversity sam-
pling of scaffolds/ R-group combinations

tion of the structure of, for example, anisomycin would in-
crease the probability of generating compounds with modu-
lated and perhaps more specific activities. This general prin-
ciple often applies to the design of focused compound librar-
ies [24,25].

Scaffold design and application

For the product-oriented compound design approach [30,31]
(see Methods), the generation of molecular scaffolds plays
an important role. Scaffolds are best defined ”hierarchically”
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Biological activity  Number of compounds

S_BEN Benzodiazepine receptor ligands 22
S_CAE Carbonic anhydrase II inhibitors 22
S_H3E H3 antagonists 21
S_TKE Tyrosine kinase inhibitors 21
S_5HT Serotonin receptor ligands 21
S_HIV HIV protease inhibitors 18
S_COX Cyclooxygenase-2 inhibitors 17
N_5LP 5-Lipoxygenase inhibitors 17
N_ACE Angiotensin converting enzyme inhibitors 9
N_CAT Acyl-CoA: cholesterol acyltransferase inhibitors 20
N_BLC β-lactamase inhibitors 14
N_PPD Phosphodiesterase inhibitors 14
N_PA2 Phospholipase 2 inhibitors 12
N_PKC Protein kinase C inhibitors 15
N_RVT Reverse transcriptase inhibitors 14
N_TMB Thrombin inhibitors 7

Table 1 Biological activity
classes of compounds in the
test database

The database consists of com-
pounds belonging to 16 bio-
logical activity classes. The
first column shows abbrevia-
tions for each activity class.
”S_” indicates synthetic com-
pound classes and ”N_”
natural molecules

Table 2 Performance of mini-fingerprint MFP1 in similarity searches including natural molecules

cut-off correct (%) incorrect (%) cut-off correct (%) incorrect (%)

MFP1 0.85 19.7 0.1 0.75 34.1 1.0
PH2D 0.85 11.6 0 0.64 26.7 0.6
S_BEN 0.85 20.8 0.11 0.75 35.8 1.13
S_CAE 0.85 19.9 0.09 0.75 32.1 1.07
S_H3E 0.85 20.6 0.10 0.75 35.5 1.19
S_TKE 0.85 19.7 0.10 0.75 33.5 1.09
S_5HT 0.85 20.5 0.10 0.75 35.1 1.17
S_HIV 0.85 20.3 0.10 0.74 36.4 1.24
S_COX 0.85 18.9 0.09 0.75 32.1 1.07
N_5LP 0.85 20.1 0.10 0.75 35.1 0.87
N_ACE 0.85 19.8 0.07 0.74 32.8 1.03
N_BLC 0.85 17.7 0.10 0.74 32.8 1.18
N_CAT 0.85 18.9 0.07 0.74 34.2 1.02
N_PPD 0.85 19.9 0.10 0.75 34.6 1.08
N_PA2 0.85 19.4 0.06 0.74 35.3 0.94
N_PKC 0.85 19.0 0.10 0.74 34.6 1.10
N_RVT 0.85 19.8 0.03 0.75 34.8 0.79
N_TMB 0.85 19.7 0.09 0.74 34.4 1.16

Performance is reported for two similarity cut-off values of
the Tanimoto coefficient (Tc). The second Tc value repre-
sents the similarity cut-off value at which best performance
was achieved, as determined in our calculations. A Tc value
of 0.85 is often used as a measure of chemical similarity of
two molecules [6]. ”Correct” reports the percentage of cor-
rectly identified compounds and ”incorrect” the percentage
of false positive matches. The first two rows report the over-
all performance of MFP1, consisting of only 54 bit positions,

in exhaustive ”one against all” searches in the test database,
and compare its performance to a pharmacophore atom-type
fingerprint, PH2D [52], implemented in MOE, that consists
of 1,024 bits. Rows three to 18 report results of reference
calculations. In each calculation, one activity class was omit-
ted from the databases and exhaustive similarity searches were
carried out for compounds belonging to the remaining 15
classes. Biological activity classes are abbreviated accord-
ing to Table 1
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as core structures obtained from molecules after subtraction
of R-groups [32]. Figure 1 shows two different types of scaf-
folds used to generate MF arrays. In our approach, scaffolds
are either directly derived from natural molecules by speci-
fying points of diversity (i.e., sites that can be targeted by
diverse chemical reactions) or derived from synthetic mim-
ics. To ensure synthetic feasibility of MF compounds, we
attempt to design scaffolds that implicitly incorporate reac-
tion information. This is illustrated in Figure 2, which shows
scaffolds directly derived from anisomycin. Two points of
diversity were targeted, a secondary amine and a hydroxyl
group. The use of intermediates of specific chemical reac-

tions as separate scaffolds incorporates reaction information.
For anisomycin, this resulted in four scaffolds for the first
point of diversity (secondary amine) and one scaffold for the
second (hydroxyl group). Products from two-step combina-
torial reactions were designed by diversity sampling of scaf-
fold/R-group combinations at the first point and subsequently
submitting the products generated to diversity sampling at
the second site. Synthetic feasibility of compounds is further
considered by pre-selection of R-groups.  For example, in
the case of anisomycin, R1 substitutions, as shown in Figure
2, were computed using R-groups with only carbon atoms as
attachment points to avoid the design of unstable compounds.
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the hydroxyl group). Combination of these scaffolds yields a
total of nine scaffolds for a two-step combinatorial reaction
sequence. In this example, R1 substitutions were computed
using R-groups with only carbon atoms as substitution points,
while R2 substitutions were generated using R-groups with
carbon, nitrogen, or oxygen atoms as substitution points
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Similarity search tools

The identification of synthetically accessible mimics of
metabolites is an important component of the MF approach.
We have previously reported the generation of small binary
fingerprints (termed mini-fingerprints or MFPs) that were
specifically designed to recognize molecules with similar
biological activity, rather than chemical similarity only [42].
In test calculations using a database consisting of seven com-
pound classes, a total of 455 compounds, MFP1 correctly
recognized approximately 50% of compounds belonging to
the same activity class and only 2% false positives [42,43].
An important aspect of MFP design has been to balance the
level of structural resolution at which compounds are evalu-
ated and the ability to detect features responsible for a spe-
cific biological activity [43]. In other words, search tools

designed to identify structure-activity relationships correctly
must be capable of distinguishing critical features in com-
pounds having different biological activities but should not
be too sensitive to minor structural variations that are toler-
ated within the same activity class. MFPs generated so far
were not specifically trained on natural molecules.

In the context of MF library design, we have tested MFP1
for its ability to recognize similarities in both synthetic and
natural molecules. To do so, we have assembled a test data-
base consisting of synthetic and natural compounds belong-
ing to 16 biological activity classes (between seven and 22
compounds per class). The exact composition of the test da-
tabase is reported in Table 1. In this more challenging test
case, systematic similarity searches revealed an approximately
34% probability to identify molecules with similar biologi-
cal activity correctly and only 1% false positives. This over-
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anisomycin and the two synthetic mimics shown in Figure 3

(using the same color scheme). The superpo-sition reveals
the spatial correspondence of points of chemical diversity
(or substitution points, labeled R) in these molecules
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all performance level was achieved at a Tc value of 0.75. If
the Tc cut-off value was greater (and thus more stringent)
than 0.75, fewer similarities were identified. The results are
reported in Table 2. Consistent with previous findings [42],
MFP1 performed better than a more complicated reference
fingerprint [52]. Additional calculations shown in Table 2
demonstrate that omission of individual biological activity
classes did not notably influence overall performance, indi-
cating the absence of significant class-specific effects. Thus,
on the basis of these calculations, similarity searching using
MFP1 provided a reasonable chance to identify compounds
with similar properties from different sources.

Anisomycin mimics

As the next step, following scaffold design, synthetic com-
pounds were searched for potential mimics. Using a Tc thresh-

old value of 0.8, eleven ”similar” compounds were identified
and Figure 3 shows two examples. Some structural similari-
ties are evident when comparing these molecules. However,
it would have been difficult, if not impossible, to identify
these similarities by substructure matching. Figure 4 shows
the results of f lexible three-dimensional alignments of
anisomycin and its mimics, which further illustrates simi-
larities between these molecules. As can be seen, points of
chemical diversity in anisomycin (as specified in Figure 2)
spatially correspond to those in the mimics. The comparison
supports the idea that meaningful similarities can be detected
using relatively simple 2D metrics. In addition, search calcu-
lations identified 21 natural molecules similar to anisomycin.
Since the molecular basis of the protein synthesis inhibitor
activity of anisomycin is little explored, functional analogs
may act in a variety of ways. This supports the strategy of
generating compound libraries focused on anisomycin and
its mimics to search for novel inhibitors of protein synthesis.

Figure 5 Structure of a MetaFocus array. The anisomycin
array represents a virtual library of approximately 8,000 en-
tries resulting from directly derived scaffolds, from scaffolds
derived from similar natural molecules, or synthetic mimics.

”20 from 2” means that a total of 20 molecular scaffolds
were derived from two similar metabolites, and ”23 from 2”
means that 23 scaffolds were derived from two synthetic mim-
ics
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Anisomycin array

The MF array was obtained by combining scaffolds, mimics,
and diverse compounds generated using anisomycin as tem-
plate. The organization of the array is shown in Figure 5. The
key to the organization and expansion of MF arrays is the use
of an indexing scheme. Compound indices are shown in Fig-
ure 6. This ensures that all entries and their relation to other
compounds are clearly defined and makes it possible to search
the array for analogs of natural products. Alternatively, arrays
can be searched using synthetic compounds as input to find
out whether these compounds are related to any of the natu-
ral molecules in the array.

Focusing on protein kinases

Another array was designed based on an ”insulin mimetic”,
a fungal metabolite capable of activating the insulin receptor
tyrosine kinase (and thus inducing insulin-dependent signaling
pathways) [53]. This molecule, a natural quinone derivative,
named L-783,281 [53], is shown in Figure 7. It is chemically
more complex than anisomycin. In contrast to anisomycin,

its activity has been identified as target-specific. The mo-
lecular mechanism of action is yet to be determined but data
available so far suggest that binding of L-783,281 to the in-
sulin receptor kinase induces an (activating) conformational
change in the region of the ATP (cofactor) binding site adja-
cent to the catalytic site [53]. Thus, L-783,281 presents an
attractive starting point to generate molecules that potentially
modulate the specificity and activity of protein kinases, similar
to a previously reported approach [23].

Similarity searching for L-783,281

Using a Tc cut-off value of 0.8 for MFP1 overlap, six syn-
thetic mimics were identified and, using a slightly higher Tc
value of 0.85, 21 related natural molecules, the majority be-
ing other quinone derivatives. Representative examples are
shown in Figure 7. Although the compounds have not yet
been tested, literature searches revealed that one of these
compounds, bisindolylmaleimide III (BM), has known in-
hibitory activity against protein kinase C [54]. Comparison
of its structure with other kinase inhibitors [23,24] suggested
the possibility that it may bind to the cofactor binding site.
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tained by diversity sampling from scaffold number five de-
rived from synthetic mimic number one of natural molecule
one (anisomycin)
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This region is largely conserved in protein kinases, yet suffi-
ciently different to permit the generation of ligand with dis-
tinct specificity [23,55]. Thus, in this case, these compounds
are thought to bind to similar sites in related enzymes, yet
cause opposite effects. It follows that exploitation of these
molecules is likely to yield additional compounds with fur-
ther modulated effects, consistent with the idea behind MF
array design.

Compound and array design

We initially focused compound design on BM. Nine scaf-
folds were derived and from these, 2,000 diverse compounds
were sampled (Figure 8). The current structure of the MF
array is shown in Figure 9. In contrast to the anisomycin ex-
ample (shown in Figure 5), the L-783,281 array is only par-
tially filled, since semi-synthetic derivatives of L-783,281 or
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derivatives designed from similar natural molecules are pres-
ently not included. However, the array can be readily ex-
panded to include, for example, compounds designed from
other mimics.

Conclusions

We have attempted to develop a design strategy that relates
structures and properties of naturally occurring molecules and
synthetic compounds and provides a basis for the generation
of natural/synthetic hybrid libraries. A major reason for do-
ing so is that many natural molecules and their activities (even
if not well characterized) provide a relatively unexplored
knowledge base for focusing compound libraries and gener-

ating chemical diversity. The MetaFocus concept captures
information encoded in natural molecules and translates this
information into synthetically accessible molecules. Each
array is focused on a specific natural molecule and presents a
defined, yet flexible and expandable data structure. However,
there are inherent limitations to the approach and a number
of possibilities for improvement. Arrays can certainly not be
generated for many natural molecules that are too complex
for our current approach. Thus, the selection of suitable natural
products will continue to depend, to some extent, on subjec-
tive criteria. Furthermore, since a critical component of this
concept is the identification of synthetically accessible mim-
ics of natural molecules, we aim to further improve the per-
formance of our search tools to identify molecules with similar
properties, regardless of their chemical source. However, ir-
respective of current computational details, design of MF

1 synthetic mimic:
Bisindolylmaleimide III

9 scaffolds der ived
from mimic

2000 diverse compounds
computed from scaffolds

NO O
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Figure 8 Compound design. Bisindolylmaleimide III was
identified by similarity searching as a synthetic mimic of L-
783,281 (see Figure 7). Nine scaffolds were derived from this

molecule and 2,000 diverse compounds were computed from
these scaffolds. Representative structures are shown
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arrays is beginning to set directions for chemical applica-
tions, as illustrated by our examples.
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